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PARALLEL DIRECTIONALLY SPLIT SOLVER BASED ON REFORMULATION OF
PIPELINED THOMAS ALGORITHM

A. POVITSKY *

Abstract. A very efficient direct solver, known as the Thomas algorithm, is frequently used for the
solution of band matrix systems that typically appear in models of mechanics. The processor idle time is a
reason for the poor parallelization efficiency of the solvers based on the pipelined parallel Thomas algorithms.

In this research an efficient parallel algorithm for 3-D directionally split problems is developed. The
proposed algorithm is based on a reformulated version of the pipelined Thomas algorithm that starts the
backward step computations immediately after the completion of the forward step computations for the first
portion of lines. This algorithm has data available for other computational tasks while processors are idle
from the Thomas algorithm.

The proposed 3-D directionally split solver is based on the static scheduling of processors where local and
non-local, data-dependent and data-independent computations are scheduled while processors are idle. A
theoretical model of parallelization efficiency is used to define optimal parameters of the algorithm, to show
an asymptotic parallelization penalty and to obtain an optimal cover of a global domain with subdomains.

It is shown by computational experiments and by the theoretical model that the proposed algorithm
reduces the parallelization penalty about two times over the basic algorithm for the range of the number of

processors {(subdomains) considered and the number of grid nodes per subdomain.

Key words. parallel computing, parallelization model, directionally split methods, pipelined Thomas
Algorithm, banded matrices, ADI and FS methods

Subject classification. Computer Science

1. Introduction. Efficient solution of directionally split banded matrix systems is essential to multi-
grid, compact, and implicit solvers. When the implicit schemes are applied to multi-dimensional problems,
the operators are separated into one-dimensional components and the scheme is split into two (for 2-D
problems) or three (for 3-D problems) steps, each one involving only the implicit operations originating
from a single coordinate [1]. These numerical algorithms are denoted as fractional step (FS) or alternating
direction implicit (ADI) methods.

According to D. Caughey, the development of implicit CFD algorithms suitable for distributed memory
machines will become increasingly important in the future. The parallelization of implicit schemes will require
more ingenuity if they are to remain competitive with parallel explicit schemes. The interplay between the
data structures, the memory assignment among processors, and its access by the flow solver will require a
truly interdisciplinary approach to produce effective algorithms [2].

For block-banded systems the LU decomposition method leads to an efficient serial direct algorithm
known as the Thomas algorithm. Parallelization of implicit solvers that use the Thomas algorithm for
the solution of banded system of equations is hindered by global data dependencies. Parallel versions of
the Thomas algorithm are of the pipelined type [3]. Pipelines occur due to the recurrence of data at the
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forward and the backward step computations of the Thomas algorithm. During the pipelined process the first
processor has to wait for the completion of the forward step computations and completion of the backward
step computations for the first group of lines on all processors ahead. Thus, the first processor becomes idle
at the switch from the forward to the backward step of the Thomas algorithm. In turn, the last processor
has to wait for available data at the beginning of each spatial step.

The use of the pipelined Thomas algorithm (PTA) results in communication between neighboring pro-
cessors due to the transfer of coefficients on the forward step and transfer of solution on the backward step.
One may use a separate message after completion of the forward or backward step for a single line, however,
this results in the maximum communication time latency overhead. On the other hand, reducing the latency
overhead by sending data from more than one line in each message increases the data dependency delay
effect and processor idle time. This latency and data dependency delay tradeoff determines the optimum
number of lines to be completed before a message is sent to the neighboring processor [4], [5]. V. Naik et al
[4] defined this optimum number of lines and used it in their parallelization of an implicit finite-difference
code for solving Euler and thin-layer Navier-Stokes equations. Still, there is the processor idle time between
the forward and the backward step computations and global synchronization of processors at each spatial
step of the ADI. This parallel implicit directionally split algorithm is referred to as the basic algorithm in
this study.

In our recent study [6], we formulated a new version of the Thomas parallel algorithm named the Immedi-
ate Backward Pipelined Thomas Algorithm (IB-PTA). The backward step computations begin immediately
after the forward step computations have been completed for the first portion of lines. Some lines have
been rendered by the Thomas algorithm before processors becorie idle. Although the IB-PTA cannot reduce
the processor idle time, there are data available for other comyutational tasks while processors are idle. A
multi-dimensional numerical algorithm using the IB-PTA in each spatial direction can run on processors in
the time-staggered manner without a global synchronization (the first processor finishes its computations
first at each time step). The development of such algorithm is addressed in this study.

Various computational tasks are examined for execution while processors are idle from the Thomas
algorithm in the current direction. These tasks may include: (i) :omputation of the left-hand side coefficients
for the next spatial stage, including computation of damping functions and non-linear TVD evaluations;
(ii) computation of the right-hand side coefficients, for example, multiplications of intermediate FS or ADI
functions by transformation metrics of curvilinear grids; and (iii} execution of the forward step computations
of the Thomas algorithm in the next spatial direction. These tasks are classified here as either data-dependent

(using the last spatial step solution) or data-independent.

We develop a theoretical model to estimate a parallelization efficiency of the proposed algorithm. Such
models are recognized as a quantitative basis for the design of parallel algorithms. We base our model on
the idealized multicomputer parallel architecture model [7]. Iow-level hardware details such as memory
hierarchies and the topology of the interconnection network ar: not introduced in the model. This model
is used here to define the optimal number of solved lines per message, to provide asymptotic analysis and
to estimate of parallelization efficiency for a large number of processors which are not available yet, and to
compare the proposed algorithm with the basic one. First, this model is used for a cubic global domain
(equal number of grid nodes in all directions). Then an optimal partitioning for a global domain with
unequal number of grid nodes in different directions is obtained based on this model. To get a unified
approach for various MIMD computers, results are presented in terms of ratios between communication
latency and transfer times to the backward step computation tiine per grid node. These ratios were used in



studies [8] and [9] for the complexity analysis of various parallel algorithms for numerical solutions of partial
differential equations (PDE).

As the development of a computer program by the proposed algorithm may represent certain difficulties,
we design a parallel computer code using modular design techniques [7] and present it here. We generate
static schedule of processors for the IB-PTA in a single direction by methods described in our study [6] and
fashion schedules of the pipelined Thomas algorithm in different directions together with local computational
tasks. Performing core computations of the algorithm, processors are governed by this static schedule.
Computations are separated from communication between processors. One can switch to other type of
banded matrix system to be solved, method of computing discretized coefficients of PDE, type of directionally
split method, other schedule of processors, or type of message-passing library changing only corresponding
modules of the code.

This paper is composed of the following sections. In section 2, the parallelization method is described.
In section 3, the theoretical model of parallelization efficiency is developed for 2-D and 3-D computational
domains. In section 4, the parallelization method and the theoretical model of the parallelization efficiency
are tested and verified by a numerical solution of a benchmark problem on CRAY T3E and IBM SP MIMD

computers.
2. Formulation of the algorithm.

2.1. Mathematical formulation. Consider a non-linear partial differential equation

dau
(1) — =S0)0U+Q

dt
where t is the time, S(U) = S (U) + S,(U) + 5. (U) is a spatial differential operator and @ is a source term.
As an example of a directionally split method we consider the fractional step (FS) method. The method is
based on a factorization of the Crank-Nicholson scheme, where the factorized scheme is solved in three steps

as a succession of one-dimensional Crank-Nicholson schemes:

(1 — 0.5AtS,)U T = (1+ 0.5AtS,)U™ + AtQ

(1 - 0.5At8,)U™T = (1 + 0.5AtS,)Un+1

(2) (1 - 0.5AtS,) U™ = (1 + 0.5AtS,)Un+1,

where 5;,5, and S, are linear finite-difference operators in the z, y and z directions, respectively, and
Unt+l Un+l are intermediate FS functions.
Second-order finite-difference formulation of this system leads to band tri-diagonal system of linear

equations
(3) @i kUio1,k + bij kUi ik + Ci kUi, = figks

where 1, j, k are spatial grid nodes, coefficients a; j k, bi ;& and ¢; j,x are functions of U™ and/or time, f; j
is the r.h.s. of equations (2). The above system of linear equations corresponds to the first spatial step of
Egs. (2). The similar banded linearized systems must be solved for the second and the third spatial steps of
the FS.



This system of N3 equations is considered as N2 systenis of N equations where each system of N
equations corresponds to j, k = const. Therefore, the scalar tridiagonal version of the Thomas algorithm is
used to solve each system of N equations. The forward step of the Thomas algorithm for this system is

Ci—,j.k

dijk = b1k, dijue =bijx— gk y 1=2,.., Neotz
i gk
f1,5.k —Qijk9i-145k + fijk
(4) 1,5,k = p ~, Gijk = . 4 e =2, ., Niotas
1,5,k g,k

where Nig, is the number of grid nodes in the z direction. Th= backward step of the Thomas algorithm is

Ci,jk
(5) UN,jk = 9Nk Uijk = gijk — Ui+1,j,k_'_d. " k= Nz —1,...,1
2,7,

The solution of this banded system of N equations is also dencted as the rendering of the line (j, k).

2.2. Pipelined Thomas algorithms. To parallelize the Thomas algorithm, the coefficients of Eq.
(3) are mapped into processors so that the subset {ai;x, bijk, cijk| ¢ = NI — 1)+ 1,.,NI, j =
NJ-1)+1,.,NJ, k=N(K -1)+1,.., NK} belongs to tfhe (1, J, K)** processor. The computational
domain is divided to N; x Nj x Nk subdomains with N x N x N grid nodes each one.

The Pipelined Thomas Algorithm (PTA) (4] is cited shortly. The (I, J, K)t* processor receives coefficients
dN(1-1),5,k» 9N(I-1),5.k from the (I —1,J, K)** processor; computes coefficients d; ; » and g; j , where [ =
N(I —-1)+1,..., NI of the forward step of the Thomas algorithm, sends coefficients d(NI,j,k), g(NI,j k)
to the (I + 1, J, K)t* processor and repeats computations (4) until the forward step computations for the
N? lines are completed. After completion of all the forward step computations specific to a single processor,
the (I, J, K)** processor has to wait for the completion of the forward step by all processors ahead. The
backward step computations (5) are performed in the similar manner as the forward step computations but
in the decreasing direction. The lines (j, k) are gathered in groups and the number of lines is solved per
message. Processors are idle between the forward and the backward steps of the Thomas algorithm and
there are no data available for other computational tasks by this time.

The Immediate Backward Thomas Pipeline Algorithm (IB-PTA) has been developed in our study [6]
and is described here briefly. First, groups of lines are rendered by the forward step computations (see above)
till the first group of lines is completed on the last processor. Then the backward step computations for each
group of lines begin immediately after the completion of the forward step computations for these lines. Each
processor switches between the forward and backward steps of th> Thomas algorithm and communicates with
its neighbors to receive necessary data for beginning of either th> forward or the backward computations for
the next portion of lines. Finally, remaining lines are rendered b'r the backward step computations and there
are no available lines for the forward step computations. It was shown [6] that the idle time is the same for
the IB-PTA and the basic PTA when these algorithms are used in a single direction. The advantage of the
IB-PTA is that processors become idle after completion of subset lines. At this time processors can be used

for other computational tasks requiring these data, as described in the following subsection.

2.3. Schedule of processors for directionally split problem. The basic algorithm is executed
in the y and z directions the same way as in the z direction. After completion of all Thomas algorithm
computations in the last spatial direction, processors compute S(U ) operators. Communications control
computational tasks as either the forward step coefficients or tke backward step solution must be obtained
from the neighboring processors for the beginning of either the f>rward or the backward step computations,

and there are no other computational tasks while processors wa t for these data.



This is no longer the case for the proposed algorithm, because processors execute other computational
tasks while these processors are idle. Additionally, thesc tasks might be manifold, and the idle processor
times are different for the different processors. Therefore, the static scheduling of processors is adopted in
this study, i.e., the communication and computations schedule of processors is computed before numerical
computations are executed.

We define a time unit as a time interval when a processor either renders a group of lines by one type of
computations or is idle. Processors may communicate only at the beginning of the time unit. The length of
a time unit is the same for all processors. This schedule of processors includes the order of computational
tasks on each processor and the order of communication with its neighbors.

Types of computations in this study include non-local (the forward step computations and the back-
ward step computations of the Thomas Algorithm) and local (computations of spatial operators S(U) or
computations of the right hand side (r.h.s.) of equations (2)). Most of considered computational tasks,
namely, all the Thomas algorithm computations, local computations of the r.h.s., and local computations of
spatial operators at the end of a time step use results of the Thomas algorithm computations in the last ren-
dered direction, i.e., these tasks are data-dependent. However, computations of the S, and S, operators are

data-independent from the results of the Thomas algorithm computations in the directions z and y. These

operators depend upon solution U™ and do not depend upon intermediate functions Un+1 and Un+1. Both
data-dependent and data-independent tasks may be executed while processors are idle from the Thomas
algorithm. However, the practical realization is different for data-dependent, data-independent, local and
non-local tasks. Additionally, each type of computations has a different computational time per grid node;
therefore, the number of rendered lines per time unit are different for various types of computations (see the
next section about calculation of these numbers).

Computations are governed by an integer-valued variable:

4  local computations

. +! forward step computations

(6) J (pa 7’) = ..
processor is idle

—I! backward step computations

where p is the processor number, ¢ is the number of time unit, [ = 1,2,3 corresponds to the directions z, y
and z, respectively.

A scheduling algorithm for PTAs in a single direction has been developed in our study [6]. The processor
schedule for a subset of Nk processors {(I, J, 1), ..., (I, J, Nk)} that form a pipeline for the Thomas algorithm
computations in the z direction is shown in Fig. 1. It is assumed, that the computational time per grid node
is equal for the forward and the local computations and it is 1.5 times greater than that for the backward
step computations. Therefore, the number of portions of lines for the forward step computations is equal to
that for the local computations, whereas the number of portions of lines for the backward step computations
is 1.5 times less. The column of values J(K, i) corresponds to the K** processor (from 1 to Nk). Columns
are shifted so as each horizontal line corresponds to a single time moment in terms of wall clock. Arrows
— ——>,< ——— and < —— > denote send, receive and send-receive communications between neighboring
processors in this processor pipeline.

The processor schedule corresponds to the execution of the Thomas algorithm in the direction z and the
local, data-dependent computations of the S,(U™) operator for the next time step. The proposed algorithm
is based on the IB-PTA and uses the processor idle time for the computations of the operator S;. Processors
run the proposed algorithm in a time-staggered way so that the first outermost processor (I, J, 1) completes



its computations first and processors do not become idle (Fig. 1a). For the basic algorithm, the operator S,
can be computed only after the completion of the PTA for all lines (Fig. 1b). The first outermost processor
completes computations last due to the idle time between the forward and the backward steps (Fig. 1b).
Thus, Fig. 1 illustrates the main advantage of the proposed algorithm over the basic one.

The other schedule of processors includes the forward step computations of the Thomas algorithm in
the next direction while processors are idle from the Thomas aigorithm in the current direction. To make it
feasible, the grid nodes rendered by the Thomas algorithm in the current direction must form a contiguous
extend in the next direction.

To execute the Thomas algorithm in the z direction, the set of N2 lines {(j,k),j =1,..,N, k=1,..., N}
is gathered in groups in such a way that non-rendered lines with the minimum value of index k are taken
first. For example, consider the subdomain with 14 nodes where the 142 = 196 lines are gathered in the 17
groups (see Fig 2a). Each group contains the 12 lines except the last, 17t* group. To execute the Thomas
algorithm in the z direction, lines are gathered in groups by this method that secures a contiguous extent
in the y direction.

The schedule of processors corresponding to this case is shown in Fig. 3. The first two processors
have idle time (denoted as 0) between the forward and the backward steps and the first processor does not
complete its tasks first. The reason is that there are no completed lines while these processors become idle.
The straightforward way to remedy the problem of idle processcrs is to reduce the number of lines per group.
However, the communication latency time increases as more messages have to be transfered.

Consider the case where processors are used for the Thomas falgorithm computations in the next direction
while they are idle repeatedly for the z and y directions. In :zzddition to the previous case, executing the
Thomas algorithm computations in the y direction, the algorithm gathers lines so as to form a contiguous
extend of nodes in the z direction. Therefore, the set of N2 lines {(i,k),i =1,....N, k=1,..., N} is gathered
in groups in such a way that non-rendered lines with the mininium value of index i are taken first.

Consider the previous example (Fig 2a-b). The first 8 groups of lines must be completed in the current
direction before processors become idle. Otherwise, processors stay idle when they perform computations
in the y direction waiting for a contiguous extend of grid nodes in the z direction. This causes a severe
restriction on the maximum number of lines per group.

Thus, scheduling of data-dependent computations while pracessors are idle from the Thomas algorithm
may lead to restrictions of the number of lines per group. By scheduling data-independent computations
while processors are idle we avoid these restrictions. In the cousidered case of FS, computations of the Sy
and S, operators while processors are idle from the Thomas algorithm in the z and y directions are data-
independent. Both the IB-PTA and the PTA with the processor scheduling may be adopted for the two first
stages of the FS. Still, the IB-PTA is essential for the last stage of the FS.

The following recommendations with regard to the processor scheduling are drawn for non-linear FS
methods:

e If computational time per grid node is greater for the local co>mputations than that for the forward step
computations, the spatial operators are computed for a subset >f grid nodes while processors are idlc from
the Thomas algorithm. Coefficients for the rest of nodes are co nputed after the completion of the Thomas
algorithm for all lines in the current direction. These computatio:s are local; therefore, they do not contribute
to the parallelization penalty time.

e If local computations are partly data-independent (computatic ns of the Lh.s. coefficients) and partly data-
dependent (computations of the r.h.s.), then the data-indepencent computations are scheduled to execute



first while processors are idle.

o If data-independent computation time per grid node is less than the forward step computational time per
grid node and greater than a half of the latter time, then the computations of the S, and S, are scheduled
while processors are idle in the z direction. The Thomas algorithm computations in the z direction are
scheduled while processors are idle in the y direction.

For the systems of the Euler or Navier-Stokes equations these suggestions can be applied as follows.
A typical large-scale aerodynamics code ARC-3D [4], [11] includes three dimensional solution of a system
of five PDE and uses two versions of ADI. The first version is the original Beam-Warming Approximate
Factorization scheme [12] leading to the block tri-diagonal Thomas algorithm operating with 5 x 5 blocks.
The other version is based on the diagonalization technique of Pulliam and Chaussee [13], leading to the
decoupling of variables and solution of 5 penta-diagonal scalar systems in each direction. Naik et al measured
the elapsed CPU time and number of floating point operations for these two versions ([4],Table 2). Presented
there are the following results important for our study: (i) the cost of implicit part of the solver (including
the setup of coefficients of the linear system) is the dominant cost for the two versions; (ii) the cost of the
r.h.s. computations is approximately equal to the total cost of forward step computations in all directions for
the second version; (iii) the cost of coefficients setup is greater than the cost of the forward step computations
for the second version.

For the scalar penta-diagonal version, the setup of coefficients costs much due to non-linearity of the
original system of equations, use of fourth order numerical viscosity in implicit side, and multiplications of
intermediate ADI functions by curvilinear derivatives. For the block tri-diagonal version, the forward step
computations cost approximately ten times as much as those for the scalar penta-diagonal version.

For the scalar penta-diagonal version, one may use processors for local computations while they are idle
from the Thomas algorithm. These local computations include data-independent computations of discretized
coeflicients and data-dependent multiplications of intermediate FS functions by curvilinear derivatives. For
the block tri-diagonal version, the only way to use the processor idle time is to execute the Thomas algorithm
in the next direction. For the third stage of the ADI, the data-dependent r.h.s. computations may be
performed.

3. Theoretical model of parallelization efficiency. A parallel machine model called the multi-
computer [7] is used here for the development of the model. A multicomputer comprises a number of von
Neumann computers, or nodes, linked by an interconnection network. Each computer executes its own
program. This program may access local memory and may send and receive messages over the network.
Messages are used to communicate with other computers or, equivalently, to read and write remote memo-
ries. In the idealized network, the cost of sending a message between two nodes is independent of both node
location and other network traffic but does depend on message length. Although the most important case
for parallel computing is 3-D, we start with the 2-D case and further use the same technique to build the
theoretical model for the 3-D case.

3.1. 2-D case. The parallelization efficiency is estimated for a square computational domain covered
with Ngx Ny equal load-balanced subdomains with V x N grid nodes per subdomain Each subdomain belongs
to a different processor. A single PDE to be solved and the FS method (2) with tri-diagonal matrices in each
direction are assumed. Extensions to a 3-D case and global computational domain with an unequal number
of grid nodes in each direction will be considered in the next subsections.

The communication time for a single message between two processors in the network can be approximated



by the following linear expression [9], [10]:
() f(L)=bo+b1L,

where by and b, are communication coefficients and L is the length of the string in words.
In this section, the additional (penalty) time required for a single FS time step due to communication
and idle time of processors is estimated. This penalty time is defined as

(8) F= Tparallel - Tscria.l/NDa

where Tpqranier is the actual elapsed time per processor on a MIMD computer, and T o is the actual
elapsed time on a single processor. The function F is composed of three main contributions:

Fy - the communication time due to the transfer of the forward step coefficients and the backward step
solution of the Thomas algorithm.

F; - the idle time due to waiting for communication with the neighboring processor.

F3 - the communication time due to the transfer of the values of the FS variables between neighboring
subdomains.

For the square subdomains considered with N x N grid nodes, the quantities F; — F3 are given by

(9) Fy = Ly([N/Ki](bo + 2b1 K1) + [N/ K3](bo + b1 K3)),

where [N/K1] and [N/K>] are the number of messages for the forward and backward steps, respectively,
L, is the index of the partitioning scheme (2 for 2-D and 3 for 3-D), K; and K, are the number of lines per
message for the forward and the backward step computations.

The expression of F) is the same for the proposed and the basic algorithm as the same data must be
transfered. However, the optimal values of K and K are different for these algorithms (see below).

There are two reasons why the current processor has to wait for its neighbors:

1. Neighboring processors are synchronized due to the exciange of values of FS variables: the (I, J)th
processor completes its backward step computations for the last K lines later than the (I, J+ 1)** processor.
At the next time step, these processors must exchange interface values of the intermediate FS function.
Therefore the (I,J + 1)** processor has to wait for the (I, J)* processor.

2. If data-dependent computational tasks are scheduled while processors become idle, processors might
be idle waiting for the completion of the first group of lines (see Fig. 3). This idle time is equal to the time
difference between the completion of the first portion of lines ty the backward step and the completion of
all lines by the forward step.

The delay time of the current processor is determined as the maximum of these two delays:

(10) Faa = L, - max(NKagy, (2(Na — 1) + [5])NK1g: — N2g;).
First, let us consider that the first reason of delay dominates and thus
(11) Fa=L,NKzg: (= L,NKyg).

For the basic algorithm the global synchronization occurs twice per spatial step due to a pipelining
property of the Thomas algorithm:

(12) Fop = Ly(Ng — 1)N (K191 1 Kaga).



A processor sends the interface values of the intermediate F'S functions to the neighboring processors at
each spatial step. Thus, each processor sends 2L; messages with length N per spatial step. The communi-

cation time for transfer of the variables between neighboring processors is
(13) F; = 2Ls(b0+blN).

The term F3 does not depend on K.

Generally, computational times per grid point are different for the forward step and for the backward
step computations of the Thomas algorithm. For the IB-PTA the computational work per group of lines
should be the same for the forward and the backward step computations:

(14) NKig91 = NKags,

where g; and g are the computation times of the forward and backward steps of the Thomas algorithm per

grid point. Thus,

(15) K= B_K} .

The penalty function F' depends on the following parameters: the number of grid points in one direction
per subdomain N, the number of subdomains Np, the computation times the Thomas algorithm per grid
point g; and g2 and the communication coefficients by and b;. This function for the proposed algorithm is
given by F4 = Fy + Fy4 + F3 and for the basic algorithm Fg = F, + Fop + F3. The theoretical value of
parallelization penalty function per grid point is defined as

F
16 PnM = ——— x 100%.
( ) " govNL’ % %

The way to seek such values of K5 that minimize F is to solve the equation
(17) OF/0K, =0,

where 1 < K3 < N. In order to facilitate this operation the discrete function [z] is replaced by z in the
following discussion. For the proposed algorithm using the IB-PTA the optimal K> value is given by

(18) Kis_pra= V(1 +p)v/p, Kors—pra=V{(1+p),

where v = bp/ g2 is the ratio between the communication latency and the characteristic computational time
per grid node and p = g1/g2 is the ratio between the forward and the backward step computational times.

The corresponding value of the parallelization penalty Fj is

(19) Fa=Nga(4/v(1 + p) + 67+ 4(v/N + 7).

For the basic algorithm the optimal K; and K5 values are given by

20 K = A [ ————— K = A I
( ) 1,B (Nd 1)» 2,B Nd 1

and the corresponding value of the parallelization penalty function:

(21) Fp = Ng2(4v/v(Na — 1)(1 4+ \/p) + 67 + 4(v/N + 7).



The ratio of first components of the Fg and the F4 which are the leading terms for large v and N is

given by
(22) R, = VNa—1(1+ /) .
Vi+p

The multiplier Cy = (1 + /p)//1+ p reaches its maximum v/2 if the computational times per grid
node are equal for the forward and the backward steps (p = 1}. For the bound case g; >> g2 (p — o0), the
multiplier C; — 1.

The ratio of parallelization penalties for the large N is expressed by

(23) R2 — FPTA _ F1 + F2,PTA -+ F3 N Rl + C‘2
Fip-pra Fi+Frp_pra+F; 1+C;’

where Cy = 2.57//v(1 + p) < 2.57//27.
Thus, the ratios R; and R, are O(N;/z) with the factor 1 < C; < V2.

Now we have to verify when the first term in Eq. (10) dominates, i.e.,
(24) (2(Na— 1) + [p])NK1g1 — N?g) < NKags.
Using Eq. (14), the above inequality becomes
(25) K, <Ki,, K;<K,,,

where Ky, = N/(2(Ng—1)+[p] = 1), Kz, = pN/(2(Ng—1) +[p] - 1). By substituting Eq. (18) for Kz
in the above inequality, we obtain a condition when the first term in Eq. (10) dominates:

(26) Ve PN

S A Na D)+ p =T

If this inequality is satisfied, Eq. (19) and ratios (22, 23) are valid. The critical value of N depends linearly
upon Ny :

(27) Ner = (2(Na = 1) + [p)V/ (1 + p)v/p.

Assuming that the second term in Eq. (10) dominates, we obtain the optimal value of K from the
condition 3F /3K = 0 to give

. (1+p)y
(28) Ra=Vamn+ o1

For the case considered, the condition K}, > K, is expressed by

Aty N

(29) 2(Na— 1)+ [p] = 2(Ny - 1)+ [p]’

Therefore, the expression for N/, is given by

(30) N = V2(Na— 1)+ [plV A+ p)7v/p = Mer/V/2(Na — 1) + [p].

Thus, there are three cases in terms of the optimal number of lines solved per message. For N > N, or

if data-independent computations are scheduled while processo:s are idle, the optimal K values are defined
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by (18). For N/. < N < N, the optimal K values are equal to K, (see (25)). The values K1, and K>,
correspond to the case when the backward step computations for the first portion of lines are completed
immediately after conclusion of all the forward step computations on the first outermost processor. However,
for N/, > N these K, do not give the minimum to the penalty function. In this case the optimal K are
defined by Eq. (28), and processors become idle from the conclusion of the last group of lines by the forward
step till the beginning of the first group of lines by the backward step. Finally, the value of parallelization
penalty is given by

Nga(4/ (1 + p) + 67 +4(v/N + 7)) if N> N
2

(3l1) Fu = Ngz(2(1+P)’Y(2(1Z}iv—l)+(P1—1) + 2(Nd—1p)N[p]_1 467 +4(y/N+7)) if N, <N <N,

+
Nga(2/(1+ p)v(2(Na = 1) + [p] = 1) = Np+ 67+ 4(y/N + 1)) if N <N, .

The asymptotic analysis of the above formulae and Eq. (27 and (30) for N, and N/, leads to the

following expression for the asymptotic order of the parallelization penalty:

O(N) if O(N) > O(Ny)
(32) O(Fa) ={ O(Ny) if O(N)/?) < O(N) < O(Ny)
O(N)O(N}*) if O(N) < O(N3/?) .

Thus, for Ny, N — co the proposed algorithm has an advantage over the basic algorithm unless O(N) <
O(Ndl/z). In the last case both algorithms have the same order O(N)O(N;/z) (see Eq. 21)). The order of the
penalty function in terms of the overall number of nodes and the overall number of subdomains (processors)

is given by

O(NY2)/O(NY?)  if O(Nior) > O(NB)
(33) O(F4) =4 OWNY? if O(N¥/?) < O(Niot) < O(N3)
OO if O(Neot) < O(NY?)

where Ny, = (N x Ng)? is the overall number of nodes and Np = N, 3 is the overall number of processors.
The previous case corresponds to the data-dependent computations scheduled while processors are idle.
Now we will analyze a case where part of computations scheduled to be executed while processors are idle is

data-independent. In this case the second term in Eq. (10) becomes
(34) (2(Na— 1) + [pD)NK1g1 — (1 + a)N?g,,

where & = ga;/91 is the ratio of the data-independent computational time gq4; to the forward step com-
putational time per grid node. The data-dependent computations are scheduled to be executed first while

processors are idle from the Thomas algorithm computations. The expression for K , is given by

_ N1+ a)
(39) K = M oD+ T T

The expressions for the critical numbers are divided by (1 + ) in Eq. (27,30). Asymptotic results (32)
are the same as for the previous case of the data-dependent computations scheduled while processors are

idle. However, the parallelization penalty is reduced:

Nga(4\/v(1+ p) + 67 + 4(y/N + 7)) if N> Ner
Fy= Ngz(2(1+”)7(f}v"(’f;3+“’1—1) + 2(1\1251\71()1:[«;%_1 + 67 +4(y/N + 1)) if N, <N < N

Ng2(2\/(1+ p)y(2(Ng — 1)+ [p] = 1) = N(1 +a)p+ 67 +4(y/N+ 7)) if N< N/ .
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3.2. 3-D case. In this case a cubic domain is divided regularly into cubic subdomains with N x N x N
grid nodes each one. The parallelization penalty function is composed of the same components as in the

previous 2-D case:

(36) Fy = L([N?/K1](bo + 2b: K1) + [N*/K3] (bo + b1 K2)),
(37) Fa = Lymaz(NKags, (2(Ng — 1) + [p])NK1g1 — N3gy),
(38) F3 = L,(bo + b1 N?).

The number of grid nodes at an interface boundary is equal to N2 and not to N as for the 2-D case; therefore,
N is replaced by N2 in the components of the parallelization penalty.

The parallelization penalty component Fpp is the same as in the 2-D case, and the parallelization penalty
for the basic algorithm is

(39) Fp = Ng3(6+/YN(Na —1)(1 + /p) + 9N + 6(y/N + 7N)),

where the optimal K values are

(40) Y oy ,/ d_l

If the first term in Eq. (37) dominates, the optimal K values for the proposed algorithm are analogous to
(18) and are given by

(41) Kia=VNQ+p)v/p, Koa= /N(1+p).

The bound values K, and K3, are
(42) Kir=N?/(2(Ng—1) + [p]), K2,r = pN?/(2(Na — 1) + [p]).

Using expressions (41, 42), the critical number of nodes per sutdomain in one direction is obtained:

2(Na — 1) + [p] - 121 + o)1) *
@) N [ ) 1P ]
The values of K 4 and N/, are

1 cr
(44) Ké,A= _]\_r_(_-l——p)_'y_ Nér= N

2(Na = 1)+ [p]’ (2(Ne=1) +[p] - 1)1/3

The final expression for the parallelization penalty of the propoied algorithm in the 3-D case is

Ng2(6v/NY(1+ p) + INT + 6(y/N + NT)) if N > N,
_ 2 4 .
(45)FA = N92(3(1+P)‘Y(2£11Vvd D+[el) + 2(N3511V)+m + 9NT+6\’)'/N+ NT)) if Nér <N<N.,,

Ng2(3/N(1+ p)v(2(Ng— 1) + [p]) — N2p + 9N7 + 6(y/N + N7)) if N < N/ .

The asymptotic analysis follows a pattern very similar to that of the previous subsection:

O(N?) if O(N) > O(Nj/a)
_ ] o) if O(N;"?) < O(N) < O(N}")
(46) O(F4) = O(N) if O(NY/%) < O(IN) < O(N:” %)
O(N¥/)ON?) it O(N) < ANY) .
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If N falls into N/, < N < N, (the second line in (45)) then the following cases are considered: O(N. ; / 2) <
O(N) < O(N:ls) and O(Ndl/g) < O(N) < O(Ndl/z). In the former case the leading term is the first
component whereas in the latter one the leading term is the N7 component.

The asymptotic analysis of the parallelization penalty for the basic algorithm (39) leads to the following

expression

O(N?) if O(N) > O(Ny)

(47) OtFs) :{ O(N¥2)O(N,"?) if O(N) < O(Na) .

Thus, the proposed algorithm has an advantage over the basic one if O(N ;/ 3) < O(N) < O(Ng4). Oth-
erwise, both algorithms are of the same order. If O(N) > O(Ny), the main component in the parallelization
penalty becomes 15/N7. This component characterizes the amount of transfered data which is the same for
these algorithms. If O(N) < O(N, ;/ 3), the idle time between conclusion of the forward step computations
and completion of the backward step computations for the first group of lines becomes large and there is no
longer an advantage of the proposed algorithm over the basic one.

The order of the parallelization penalty function in terms of the overall number of nodes and the overall

number of subdomains (processors) is given by

O(NZ2)/O(NY?) if O(Nior) > O(N3/?)
(48) O(Fa)={ OWNY? if O(NH®) < O(Nyot) < O(NY?),
O(NID/ONY?Y  if O(Nyot) < O(NYY

where N;o: = (N x Ny)3 is the total number of grid nodes and Np = N 3 is the total number of processors.

The proposed algorithm has an advantage over the basic algorithm if O(N;;/ %) < O(Niot) < O(N3).

3.3. 3-D domain with different number of grid points in each direction. The case with different
number of grid nodes in the z, y and z directions is considered here (N; # N, # N,). We will obtain
theoretically (where it is possible) the optimal cover of the computational domain with subdomains.

Consider first the case where the first term in Eq. (10) dominates; therefore, the parallelization penalty
for the proposed algorithm is given by

NN, N;N,
(49) Fyp = Z (lré—lk.l (bg + 2b1K,',1) -+ {> KJ, :—I (bo + blK,',z) + NiKi,zgz + 2(b0 + bleNk)) s
i=1,2,3 b b

where i, j, k are the spatial directions (i # j # k), K;, K, and K are the numbers of lines solved
per message in spatial directions, (in general, K; # K; # Kj). The first two terms in the above equation
represent the communication time due to the transfer of the forward step coefficients and the backward step
solution. Next term corresponds to the processor idle time due to the local synchronization. The last term

is equal to the communication time due to the transfer of the FS variables. We group the terms, use Eq.
(14) and replace [z] by z, which leads to the following expression:

N;N,
(50) Fa= ) <b0(1+p) I; k+NjK-,zgz>+5b1 >~ N;N + 6bo.

i=1,2,3 i2 i=1,2,3

Both sums in the above equation will be estimated by the following known inequality:

(51) Zn:a,- > n(ﬂa,-)l/",
1=1 i=1
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where 3" | a; = n([Ti, a;)'/ for equal a;.
The estimation for the second sum in (50) is given by
(52) Y (N;Nk) > 3(N;N;Ni)%® = 3N2[3,
i=1,2,3

where Ny, = N;N; Ny is the overall number of grid nodes per subdomain. This sum is minimal if N; = N. ;=
Ni = N, ie., if the subdomains are cubic. The first sum is estimated by

(53) Z (1+ p)boN;Ni/Ki2 + NiK; 292) > 6(boga(1 + p)NiN; Ni)'/? = 6(boga(1 + p)N,,) /2.
i=1,2,3
This inequality turns into equality if N; = N; = Ny = N and K satisfies Eq. (41). Thus, the partitioning
by cubic subdomains gives the minimum parallelization penalty. In this case, the optimal number of solved
lines per message is the same in all directions, and the parallelization penalty is equal to the value stated in
the first line of (45)
The parallelizat. .i: penalty for the basic method is

N;N, N;N,

Fg= )Y " I(]' 1k-’ (bo+2blK¢,1)+[ 1? :-’ (bo+b1K 2) + (M — 1)Ni(Ki 191 + Ki 292) +2(bo + b1 N; Ny),
=1,2,3 * b

where Ny ; is the number of subdomain partitioning in the i** direction. We can show (see above), that the

Fp reaches its minimum if N, = N 7 = Nk. In this case, optimai K values are given by

B N o | _N
(54) =@y ® =y @,y

Thus, for the basic algorithm the optimal cover is also composed of cubic subdomains; however, the optimal
K values may be different for different directions. Therefore, for both algorithms the number of subdomains
in each direction is proportional to the number of grid nodes in this direction, i.e., Ngz : Ny, : Ny, =
Neotz : Ntaty : Niotz-

For the basic algorithm the penalty function for optimal K values is given by (39), where 6(Ng — 1) is
replaced by 237, , 4 V/Na,i — 1. This sum can be estimated by

(59 DRV SV SN AR
i=1,2,3 i=z,y,2

Thus, for the basic algorithm the parallelization penalty reaches its minimum for a cubic global domain. For
the proposed algorithm, the parallelization penalty is invariant with respect to the number of nodes in each
direction (see the first line in Eq (45)). This represents an add:tional advantage of the proposed algorithm
over the basic one.

If the values of K are equal to bound values K, (42), then the cubic subdomains no longer give the
minimum parallelization penalty for the proposed algorithm. Hswever, partitioning by cubic subdomains is

chosen in this case as a fair assumption.

4. Numerical solution of the sample problem. The parallelization method and the model for the
parallelization efficiency are tested by a numerical solution of a benchmark problem. The non-stationary
Laplace equation in the cube @ = [-1 <& < 1] x [-1 <y < 1| x [-1 < z < 1] is chosen as the test casc.
The PDE to be solved is

au 6*U oU 82U

(56) o =% o2 +ay 7 +c¢, 557
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TABLE 1
Characteristic parameters of MIMD computers

parameters of communication non-dimensional parameters
Computer | by, uS | by, pS/Word 92,45 | p=g1/92 | Y="bo/92 || T=b1/92
CRAY T3E | 18 0.1 0.36 1.71 50. 0.28
IBM SP 70 0.05 0.28 1.42 250. 0.18

where a;, ay and a, are non-linear functions of U. There are the following boundary and initial conditions:

(57) vV (z,y,2) € Q U(z,y,2,0)=0,
V (z,y,2) € 0 U(z,y,zt)=1.

The MIMD computers used in this study are installed in the San Diego Supercomputer Center (SDSC)
at the University of California, San Diego [14]. SDSC’s CRAY T3E has 272 (maximum 128 for a single task)
distributed-memory processing elements (PEs), each with 128 megabytes (16 megawords) of memory. Each
processor is a DEC Alpha 21164 (300 MHz clock). The T3Es run the UNICOS/mk operating system. The
T3E PEs are relatively inexpensive, with fast processing ability but slow main memory. The theoretical limit
of 600 Mflops for the 300 Mhz processors of the SDSC T3E applies only to certain operations within the
registers of the processor. The IBM SP has 128 (maximum 120 for a single task) thin node POWER2 Super
Chip (P2SC) processors with 256 MBytes of memory on each processor. The SP processors are superscalar
(implying simultaneous execution of multiple instructions) pipelined chips and are capable of executing up
to six instructions per clock cycle and four floating point operations per cycle. These nodes run at 160 Mhz
and are capable of a peak performance of 640 MFLOPS each.

Our measurements of communication times (by and b;) for the CRAY T3E and the IBM SP computers
are presented in Table 1. The maximum length of string is 1000 words. The sample size is 100 messages
for each string. Communication time is the time required to reccive a message of L words which sent from
another processor. These measurements confirm the linear approximation (7) for the communication time.

Computational times are obtained from computational experiments on a single processor. Fortran com-
piler CF90 with the third optimization level is used on the CRAY T3E. The Fortran compiler on the SP is
IBM’s XL Fortran, also known as xIf. The cash locality is exploited in our computer code, i.e., the "implicit”
direction (index ¢ in Eqgs. (4,5)) corresponds to the last index in working arrays for the Thomas algorithm
computations in all three directions. The values of p are different for CRAY T3E and IBM SP computers

as ratios between arithmetic operations are compiler- and computer- dependent.

4.1. Description of a multi-processor code. The code is designed as follows. First, the optimal
number of grid lines to be solved per message (i.e., the optimal number of groups of lines) is computed as
described in the previous section. Then, processors are scheduled in each direction according to the algorithm
described in [6]. These one-directional schedules and schedules of the local computations are joined together
to use the processor idle time according to recommendations presented in the second section. Thus, the
static schedule of processors is formed.

The solver part of the code (Appendix A) does not depend upon a particular schedule of processors.
The functions handling communications are referenced in a common form without relation to any specific

message-passing system. The external loop with the loop variable IPX execute lines group-by-group. The
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array JCOM governs communication with six closest neighbors of the current processor. The value of
ICOM(IPX,I) controls type of communications, as follows:

0 processors (o not communicate

(58) rcomupx,n={ * =™
2 receive
3 simultaneous send and receive
where I=1,...,6. The send and receive operations transfer either the forward step computations or the
backward step solution. Before the computations for the currert group of lines are executed, each processor
has completed exchanging data with its neighbors. The only duta used for the computations at the current
time unit are transfered to the processor. At the backward step of the Thomas algorithm computed values
of the solution are transfered to the processor ahead after they have been computed in the current processor
at the previous time unit. These values are stored in the array SF. At the forward step interface values
of the coefficients are not transfered immediately after they have been computed; therefore, these values
are extracted from matrices of the forward step coefficients DX and GX where they are stored. Pointers
J3X, J3Y and J3Z control these data streams in the directions z,y and z, respectively.

After communications have been completed, computations are executed according to the value stored in
the array, ITX (see (6)). The local, forward and backward ste; computations are executed in sub-routines
COEF, FRWD and BCWD, respectively.

4.2. Results of multiprocessor runs. Results of multiprocessor computer runs are shown in Tables
2a,b for CRAY T3E and IBM SP computers, respectively. The number of grid nodes per subdomain varies
from 10° to 203 for the CRAY T3E and from 123 to 20% for the SP computer. The computational domain
is covered with 33,43 or 5% equal cubic subdomains. Therefore, the total number of grid nodes varies from
27 x 103 (46.5 x 103 for the SP computer) to 10°.

Processors compute coefficients a, and a, while they are icle from the Thomas algorithm in the z and
y directions. These computations are data-independent. In this particular case a = 1.2 for the CRAY T3E
and a = 1.3 for the SP computer (see Eq. (34)). The data-dependent computations of the coefficients a,
are executed while processors are idle in the z direction. The optimal K values in each direction for the
proposed algorithm are computed by one of the Egs. (41) (42), (44). These methods and denoted as 1,2
and 3, respectively, in Tables 2a,b. For the basic algorithm, uptimal values of K are computed by (40).
The values of K for the proposed algorithm are greater than thase for the basic algorithm that confirms an
advantage of the proposed algorithm in terms of the number of messages.

The parallelization penalty (Pn) is obtained by
_Tp-T

(59) Pn T,

x 100%%,

where Tp and T are measured computational times on P processors and on a single processor with the
same size of subdomain, respectively. The parallelization penalty obtained from computer experiments is in
good agreement with that computed by the theoretical model (113). The difference between experimental and
theoretical values increases with the decrease in the number of gri1 nodes per processor. This can be explained
by those details of the computer architecture that are not taken into account in the developed theoretical
parallelization model. To match theoretical and experimental results for the SP computer, experimental
data are filtered. If the elapsed time for a time step is 30% gre iter than the averaged value, this time step
is excluded from the sample. These time steps make 3 — 5% of overall sample. The parallelization penalty
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for the basic algorithm is approximately twice as much that for the proposed algorithm for the considered
range of the number of nodes per processor and the number of processors.

To estimate the parallelization penalty for the large number of processors which are not available yet we
compute the theoretical parallelization penalty for 103 processors and present these results in Tables 2a,b.
The ratio of parallelization penalties of the basic and the proposed algorithm increases with the number of
Processors.

Finally, the computer runs are executed for an unequal number of grid nodes in various directions. The
partitionings are 8 x 4 x 2 and 16 x 2 x 2, the total number of processors is equal to 64. The parallelization
penalty for the basic algorithm is greater for the considered cases than for the 43 partitioning; however, for
the proposed algorithm parallelization penalty is almost equal to that for the 43 partitioning. This confirms
the theoretical conclusions of subsection 3.3.

5. Conclusions. A parallel implicit numerical algorithm for the solution of directionally split 3-D
problems is proposed. This algorithm provides exactly the same solution as its serial analogue at each time
step. While executing this algorithm, processors run in a time-staggered way without global synchronization
in each direction. The proposed algorithm uses the idle processor time either for computations of discretized
coefficients of the PDE to be solved or for the Thomas algorithm computations in the next spatial direction.
To make the algorithm feasible, the reformulated version of the pipelined Thomas algorithm is used.

Static scheduling of processors is adopted in this study. Various computational tasks which may be
executed while processors are idle from the Thomas algorithm in the current direction are discussed and
recommendations about optimal scheduling of processors are drawn.

A theoretical model of the parallelization efficiency is developed. This model is used to estimate the
parallelization penalty for the basic and the proposed algorithms. The optimal number of lines to be solved
per message is defined by this model. The asymptotic analysis shows the relations between the number of
grid nodes per subdomain and the number of processors which ensure an advantage of the proposed algorithm
over the basic one. Finally, this model is used for the optimal partitioning of a computational domain with
an unequal number of grid nodes in spatial directions.

The parallel computer code uses the modular design technique: a schedule of the processor tasks is
assigned before computations by the numerical algorithm and communications are separated from compu-
tational modules. Experiments with the multidomain code in distributed memory multiprocessor systems
(CRAY T3E and IBM SP) show a reasonable parallelization penalty for a wide range of the number of
grid nodes and the number of processors. The parallelization penalty agrees well with that obtained by the

theoretical model.
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Appendix A
Fragment of computer code which performs the solver of the proposed algorithm

c
c loop by porticns of lines solved per one message
c
DO IPX=1,IEND
c
c *xxxkxxxsk logistics of communications #kmkskkskkikkmkksokdkkkikkk
c
ICOMT=ICOM(IPX,I)

c a. receive from neighboring processors (only one receive is expected)

DO I=1,6
IF(ICOMT.GE.2) go to 62
END DO
go to 64
62 continue
c receive forward step coefficients from previous subdomain

IF (I.LE.3) THEN
IF (ICOMT.EQ.2) THEN
call recv(RF,2*K1,nbr(I),itagf(I))
ELSE
call sendrecv(SF,K2,nbr(I),itagb(I),RF,2%K1,nbr(I),itagf (1))

END IF
go to 64
END IF
c receive backward step solution from subdomain ahead
IF(I.GE.4) THEN
I1=I-3

IF (ICOMT.EQ.2) THEN
call recv(RF,K2,nbr(I),itagb(I1))
ELSE
IF(I.EQ.4) call STORE(SF,DX,GX,J3X)
IF(I.EQ.5) call STORE(SF,DY,GY,J3Y)
IF(I.EQ.6) call STORE(SF,DZ,GZ,J3Z)
call sendrecv(SF,2*K1,nbr(I),itagf (I1),RF,K2,nbr(I),itagb(I1))
END IF
END IF
64 continue
¢ b. send to neighboring domains
DO I=1,6
IF (ICOM(IPX,I).EQ.1) then
IF (I.GE.4) THEN
c send forward step coefficients
I1=I-1
IF(1.EQ.4) call STORE(SF,DX,GX,J3X)
IF(I.EQ.5) call STDRE(SF,DY,GY,J3Y)
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IF(1.EQ.6) call STORE(SF,DZ,GZ,J32)
call send(SF,K1,nbr(I),itagf(I1))
END IF
c send backward step solution
IF(I.LE.3) call send(SF,K2,nbr(I),itagb(I))
END DO

C *xxxkxxxxdx logistics of computations

IF (ITX(IPX).EQ.4) THEN
¢ computations of coefficients
IF(IDIR.EQ.1) call COEF(AX,BX,CX)
IF(IDIR.EQ.2) call COEF(AY,BY,CY)
IF(IDIR.EQ.3) call COEF(AZ,BZ,CZ)
END IF
¢ forward step computations
IF (ITX(IPX).EQ.1) call FRWD(DX,GX)
IF (ITX(IPX).EQ.2) call FRWD(DY,GY)
IF (ITX(IPX).EQ.3) call FRWD(DZ,GZ)
c backward step computations
IF (ITX(IPX).EQ.-1) call BCWD(VX,DX,GX)
IF (ITX(IPX).EQ.-2) call BCWD(VX,DY,GY)
IF (ITX(IPX).EQ.-3) call BCWD(VX,DZ,GZ)
END DO
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3 3 -3 3 3 3 3 3
<-=> -—=> -—=> —-—=>
3 -3 3 -3 3 3 3 3
<==> <==> -—=> —_——D> -—>
-3 3 -3 3 3 3 3 3
<==> -—=> -—=> -—=> ——=>
3 -3 3 3 0 3 3 3
<--> -—> -—=> ——=>
-3 3 3 -3 0 0 3 3
-—=> <--> -—=>
4 3 -3 3 0 o] 0 3
<-->
4 -3 3 -3 [¢] 0 0 -3
<=== <> <---
-3 4 -3 3 [¢] 0 -3 -3
<==> —-—=> === <=
4 -3 3 3 [¢] -3 -3 -3
<-- <--= <= <o
-3 4 4 -3 -3 -3 -3 -3
<-==> <=-== < o
4 4 -3 3 -3 -3 -3 -3
<= <--= <=== <===
4 -3 4 -3 -3 -3 -3 -3
<-—= Cmmm <= Kmes <=
-3 4 -3 4 -3 -3 -3 4
<-- P P
4 -3 4 4 -3 -3 4 4
{-——= Ko
-3 4 4 4 -3 4 4 4
4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4
3 4 4 4 4 4 4 4
3 3 4 4 4 4 4 4
3 3 3 4 4 4 4 4
4 4 4 1
4 4 1 1
4 1 1 1

F1G. 1. The processor schedule: (a) The IB-PTA is used for the z direction, processors compute local coefficients of the
non-linear PDE while they are idle from the IB-PTA; (b) the basic PTA algorithm is used, processors are idle between the
forward and backward steps. Ny =4,Ly =9,L, =6
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Fic. 2. Gather of lines in groups. (a) The Thomas algorithm in t/ e y direction is erecuted while processors are idle
computing the Thomas algorithm in the x direction; (b) In addition, the Tri.omas algorithm in the z direction is executed while
processors are idle computing the Thomas algorithm in the y direction. Numbers denote the group of lines to which this line
belongs.
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--->
1 1
--=> -—->
1 1 1
--=> -—-> -—->
1 1 1 1
---> ——-> -—=> -—->
1 1 1 1 1
-—-> -—-> -—=> -—=> ——->
1 1 1 1 1 1
——=> -—=> -—=> -—-> -—->
1 1 1 1 1 1
-—-> > -—-> -—->
1 1 1 1 1 -1
-—-> ~—=> -—-> <-=>
1 1 1 1 -1 1
-—-> -—-> <-->
] 1 1 -1 1 -1
<--> <-->
o] 0 -1 1 -1 1
<--> <--> —--=>
[ -1 1 -1 1 1
<= <--> -—=>
-1 2 -1 1 1 -1
<--- -—-> <-->
2 -1 2 1 -1 1
<~-= <-->
-1 2 2 -1 1 -1
<-—- <~->
2 2 -1 2 -1 1
<= <--> -—=>
2 -1 2 -1 1 1
<--- <---
-1 2 -1 2 2 -1
<--- <-->
2 -1 2 2 -1 1
<--- <---
-1 2 2 -1 2 -1
<--- <---
2 2 -1 2 -1 2
<--- <---
2 -1 2 -1 2 2
< <--=
-1 2 -1 2 2 2
P
2 -1 2 2 2 2
Cmmm
-1 2 2 2 2 2
2 2 2 2 2 2
2 -2 -2 2 2 2
-2 -2 -2 -2 2 2
-2 -2 -2 -2 -2 2

FiG. 3. The processor schedule: processors compute the forward step of the Thomas algorithm in the y direction while
they are idle from the Thomas algorithm computations in the z direction
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Parallelization penalties for the benchmark problem, Niot - total number of nodes, N - number of grid nodes per subdomain
in a single direction, K., Ky and K, - number of lines solved by backwarc step per message, Method - method of computation

of Kz, Ky and K, values, respectively (1-by Eq.

TABLE 2

computational experiments (Eq. (59)); PnM— theoretical value of penalty (Eq. (16))

a. CRAY T3E multiprocesscr system.

(41), 2-by Eq. (42) and 3-by Fq.

(44)), Pn— penalty, obtained from

Proposed algorithm Basic algorithm
Net | N | Ko | Ky | K, | Method [ Pn, % | PuM, % | K, | K, | K. | Pn, % | PaM, %
partitioning 3 x 3 x 3
27000 | 10 | 51 | 51 | 26 112 52.41 39.90 22 | 22 | 22 | 108.35 96.74
91125 |15} 63 | 63 | 62 112 23.80 19.97 27 | 27 | 27 | 53.60 49.93
216000 | 20 | 74 | T4 | 74 111 15.01 13.5¢ 31 | 31 | 31 | 33.86 31.33
partitioning 4 x 4 x 1
64000 | 10| 42 | 42 | 20 222 58.71 43.94 18 | 18 | 18 | 132.4 114.53
216000 | 15 | 63 | 63 | 47 112 31.10 21.34 22 | 22 | 22 | 59.23 57.46
512000 | 20| 74 | T4 | 74 111 15.19 13.56 26 | 26 | 26 | 39.46 36.67
partitioning 5 x 5 x 5
125000 | 10 | 35 | 35 | 17 222 67.29 54.54 16 | 16 | 16 | 152.20 | 131.61
421875 | 15| 63 | 63 | 38 112 33.84 22.6¢ 19 | 19 | 19 | 70.17 66.33
1000000 | 20 | 74 | T4 | 67 112 16.12 13.01 22 | 22 | 22 | 45.08 41.59
partitioning 10 x 10 x 10
1000000 | 10 | 19 | 19 | 10 222 - 92.6€ 11 |11 | 11 - 186.33
3375000 | 15 | 40 | 40 | 19 222 - 29.84 13 | 13 | 13 - 93.51
8000000 | 20 { 74 | 74 | 35 222 - 13.80 15 | 15 | 15 - 59.09
partitioning 8 x 4 x 2
64000 | 10 | 22 | 42 | 40 222 56.74 42.37 12 | 18 | 31 | 136.83 | 119.59
216000 | 15 | 51 | 63 | 63 211 23.12 20.89 15 | 22 | 38 | 61.23 59.77
512000 | 20| 74 | T4 | 74 111 15.11 13.56 17 | 26 | 44 | 39.23 37.71
partitioning 16 x 2 x 2
64000 | 10 [ 11 | 51 | 40 212 63.85 61.17 8 | 31 | 31 | 143.32 | 129.57
216000 | 15| 26 | 63 | 63 211 28.39 25.76 10 | 38 | 38 | 67.56 64.29
512000 | 20 | 46 | 74 | 74 211 13.08 14.25 12 | 44 | 44 | 4271 40.74
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b. IBM SP multiprocessor system.
Proposed algorithm Basic algorithm

Nt |N|K.|K,|K. Method]Pn,%IPnM,%EKx]Ky]Kz Pn, % | PuM, %

partitioning 3 x 3 x 3

46656 |12 74 | 74 | T3 223 112.36 95.62 54 | 54 | 54 | 207.19 | 198.92
91125 | 15 | 120 | 120 | 53 222 69.64 49.06 61 | 61 | 61 | 12264 | 128.86
216000 | 20 | 157 | 157 | 96 112 38.97 27.73 71 | 71 71 95.23 80.38

partitioning 4 x 4 x 4
110592 12 | 62 | 62 | 62 333 129.45 | 115.14 | 45 | 45 | 45 | 256.17 | 232.11
216000 | 15 | 87 | 87 | 39 222 93.46 70.73 50 | 50 | 50 | 156.43 | 147.15
512000 | 20 | 157 | 157 | 70 112 43.85 32.04 58 | 58 | 58 | 103.24 93.34

partitioning 10 x 10 x 10

1728000 | 12 | 22 | 22 | 37 223 - 264.81 26 | 26 | 26 - 359.85
3375000 | 15 | 35 | 35 | 43 223 - 146.53 29 | 29 | 29 - 239.19
8000000 | 20 { 62 | 62 | 27 222 - 68.04 34 | 34 | 34 - 150.08

partitioning 8 x 4x 2
110592 (12 | 27 | 62 | 91 233 | 14676 | 12559 | 20 | 45 | 77 | 219.87 | 234.34
216000 | 15| 43 | 87 [ 103 | 223 74.88 64.75 33 | 50 | 87 | 148.63 | 155.21
512000 (20| 77 | 157 [ 151 | 212 37.32 28.65 38 | 58 | 101 | 103.26 | 95.72

partitioning 16 x 2 x 2
110592 | 12 | 30 | 117 | 91 323 182.76 | 169.87 20 | 77 | 77 | 246.63 | 253.24
216000 | 15 | 22 | 134 | 103 213 99.45 90.93 23 | 87 | 87 | 184.76 | 167.85
512000 | 20 | 39 | 157 | 151 212 52.17 41.49 26 | 101 | 101 | 109.72 | 102.56

25




